Invited contribution to the volume: “Stem cells & cancer stem cells, regenerative medicine & cancer” (VSI stem cells) reprogramming and transdifferentiation – two key processes for regenerative medicine
»
Invited contribution to the volume: “Stem cells & cancer stem cells, regenerative medicine & cancer” (VSI stem cells) reprogramming and transdifferentiation – two key processes for regenerative medicine
regenerative medicine based transplants obtained from donors or mesenchymal stem cells of the fetus and newborn, important obstacles such as limited availability of organs, ethical issues and immune rejection. The increasing demand for therapeutic methods for patients hospitalized after a serious crash, severe organ dysfunction and an increased number of cancer surgery, beyond the therapeutic possibilities that are currently available.
Reprogramming and transdifferentiation provide a powerful biotechnological tool. Both procedures are based on a differentiated somatic cells, which are easily and indefinitely available, such as for example.: Fibroblasts. During the procedure of reprogramming mature cells transformed into pluripotent cells – capable of differentiating into virtually any desired cell types.
Transdifferentiation directly convert differentiated cells from one type to another type of differentiated cell. Both procedures allow for special cells obtained by a patient for therapeutic purposes in regenerative medicine. In combination with biomaterials, it is possible to obtain even the anatomical structure of the whole. special structure they can serve for their patients after a serious accident with major tissue damage but also in cancer surgery as a replacement of damaged organs. Detailed information about reprogramming and transdifferentiation procedures as well as the current state of the art is presented in our review.
The aim of regenerative medicine to restore the normal function of diseased or damaged cells, tissues, and organs using a set of different approaches, including cell-based therapies. In the field of veterinary medicine, regenerative medicine is closely related to the use of mesenchymal stromal cells (MSC), which belong to the body’s repair system and is defined as multipotent progenitor cells, capable of replicating themselves and differentiate into different cell types.This review aims to take stock of what is known about the MSC and its use in veterinary medicine focuses on clinical reports in dogs and horses on musculoskeletal diseases, areas of extensive studies reported in the literature data.
Invited contribution to the volume: “Stem cells & cancer stem cells, regenerative medicine & cancer” (VSI stem cells) reprogramming and transdifferentiation – two key processes for regenerative medicine
Human Pluripotent Stem Cells Derived Stromal Cells Heart and Their Applications in Regenerative Medicine
Coronary heart disease is a leading cause of death in the United States. recent advances in stem cell biology has led to the development and engineering of human pluripotent stem cells (hPSC) -derived heart cells and tissues for applications in the study of cellular therapy and cardiotoxicity. Initial research in this area has largely been focused on improving the efficiency of cardiomyocyte differentiation and maturation state.
However, other cell types in the heart, including endothelial cells and stroma plays an important role in the development of heart disease, response to injury and cardiomyocyte function. This review discusses recent advances in hPSCs differentiation of stromal cells to the heart, the identification and classification of stromal cell types of the heart, and application hPSC derived stromal cells of the heart and of tissue containing these cells in regenerative applications and drug development.
Description: Our StemTAG 96-Well Stem Cell Colony Formation Assay provides a high-throughput method to quantify ES cells in just 7-10 days, and no manual cell counting is required. Once colonies are formed, they may be analyzed in three different ways: 1. Lyse cells, then quantify in a fluorescence plate reader using dye included in the kit; 2. Lyse cells, then quantify alkaline phosphatase activity using reagents provided; or 3. Recover colonies from matrix for further culture or analysis.
Description: Our StemTAG 96-Well Stem Cell Colony Formation Assay provides a high-throughput method to quantify ES cells in just 7-10 days, and no manual cell counting is required. Once colonies are formed, they may be analyzed in three different ways: 1. Lyse cells, then quantify in a fluorescence plate reader using dye included in the kit; 2. Lyse cells, then quantify alkaline phosphatase activity using reagents provided; or 3. Recover colonies from matrix for further culture or analysis.
StemTAG PCR Primer Set for Stem Cell Characterization
Description: StemTAG PCR Primer Set for Stem Cell Characterization includes 7 primer pairs: Oct-4, NANOG, AFP, Flk-1, and NCAM, plus GAPDH and beta-actin as controls.
Total Protein - Murine Embryonic Stem Cell Line D3
Description: The 293AD Cell Line is derived from the parental 293 cells but selected for attributes that increase adenovirus production, including firmer attachment and larger surface area.
Description: The 293AAV Cell Line is derived from the parental 293 cells but selected for attributes that increase AAV production, including firmer attachment and larger surface area.
Description: The 293LTV Cell Line is derived from the parental 293 cells but selected for attributes that increase lentiviral production, including fimrer attachment and larger surface area.
Description: The 293RTV Cell Line is derived from the parental 293 cells but selected for attributes that increase retroviral production, including fimrer attachment and larger surface area.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: Cell Biolabs? Collagen-based Contraction Assay Kit provides a simple system to assess cell contractivity in vitro and screen cell contraction mediators. Each kit provides sufficient quantities to perform up to 24 assays in a 24-well plate. The kit can be also used in culturing cells in 3D collagen matrix.
Description: Cell Biolabs? CytoSelect MTT Cell Proliferation Assay provides a colorimetric format for measuring and monitoring cell proliferation. The kit contains sufficient reagents for the evaluation of 960 assays in 96-well plates or 192 assays in 24-well plates. Cells can be plated and then treated with compounds or agents that affect proliferation. Cells are then detected with the proliferation reagent, which is converted in live cells from the yellow tetrazole MTT to the purple formazan form by a cellular reductase (Figure 1). An increase in cell proliferation is accompanied by an increased signal, while a decrease in cell proliferation (and signal) can indicate the toxic effects of compounds or suboptimal culture conditions. The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues. This cell proliferation reagent can be used to detect proliferation in bacteria, yeast, fungi, protozoa as well as cultured mammalian and piscine cells.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: Cell Biolabs? HIF-1 Cell Based ELISA Kit is an immunoassay developed for rapid detection of HIF-1 Alpha in fixed cells. Cells on a microplate are stimulated for HIF-1 Alpha stabilization, fixed, permeabilized, and then neutralized in the well. HIF-1 Alpha is then detected with an anti-HIF-1 alpha antibody followed by an HRP conjugated secondary antibody. Each kit provides sufficient reagents to perform up to a total of 96 assays and can detect HIF-1 Alpha from human, mouse, or rat.
Description: The CytoSelect BrdU Cell Proliferation ELISA Kit detects BrdU incorporated into cellular DNA during cell proliferation using an anti-BrdU antibody. When cells are incubated in media containing BrdU, the pyrimidine analog is incorporated in place of thymidine into the newly synthesized DNA of proliferating cells. Once the labeling media is removed, the cells are fixed and the DNA is denatured in one step with a fix/denature solution (denaturation of the DNA is necessary to improve the accessibility of the incorporated BrdU for detection). Then an anti-BrdU mouse monoclonal antibody is added followed by an HRP conjugated secondary antibody to detect the incorporated BrdU. The magnitude of the absorbance for the developed color is proportional to the quantity of BrdU incorporated into cells and can be directly correlated to cell proliferation.
Description: Our CytoSelect 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.
Description: Our CytoSelect 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect 96-Well Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 96-well plates on a fluorescence plate reader. Inserts are precoated on the top of the membrane with Basement Membrane, an ECM protein mix isolated from EHS tumor cells.
Description: The CytoSelect Cell Viability and Cytotoxicity Assay Kit provides a simple format for monitoring cell viability via metabolic activity. Live cells are detected with either MTT (colorimetric detection) or Calcein AM (fluorometric detection). Dead cells are detected by EthD-1 reagent (fluorometric). All 3 detection reagents are included, along with Saponin (a cell death initiator). Prior to the assay, cells may be treated with compounds or agents that affect cell viability. This kit is suitable for eukaryotic cells, not yeast or bacteria.
Description: CytoSelect 24-Well Cell Co-Culture System provides a unique platform to monitor direct contact between two cell types in a single well. First, cells are cultured until they form a monolayer around the insert, creating a defined 8 mm cell-free zone. Once the insert is removed, a second cell type may be seeded into the exposed zone. The kit contains proprietary treated inserts and sufficient reagents for the evaluation of 24 samples. The inserts are compatible with most adherent cell types and experimental conditions.
Description: CytoSelect 24-Well Cell Co-Culture System provides a unique platform to monitor direct contact between two cell types in a single well. First, cells are cultured until they form a monolayer around the insert, creating a defined 8 mm cell-free zone. Once the insert is removed, a second cell type may be seeded into the exposed zone. The kit contains proprietary treated inserts and sufficient reagents for the evaluation of 24 samples. The inserts are compatible with most adherent cell types and experimental conditions.
Description: Cell Biolabs? Cell Contraction Assays (Floating Matrix Model) provide a simple, in vitro system to assess cell contractivity and screen cell contraction mediators. The proprietary Cell Contraction Plate eliminates the matrix releasing step of the conventional contraction assay, providing a faster, higher-throughput method to assess cell contraction.
Description: Cell Biolabs? CytoSelect Cell Proliferation Assay Reagent (Fluorometric) provides a fluorometric format for measuring and monitoring cell proliferation. Cells can be plated and then treated with compounds or agents that affect proliferation. Cells are then incubated with the proliferation reagent. Upon entering metabolically active live cells, the non-fluorescent proliferation reagent is converted into a bright red fluorescent form. An increase in cell proliferation is accompanied by increased fluorescent signal, while a decrease in cell proliferation (and signal) can indicate the toxic effects of compounds or suboptimal culture conditions. The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues. This cell proliferation reagent can be used to detect proliferation in bacteria, yeast, fungi, protozoa as well as cultured mammalian and piscine cells. The kit contains sufficient reagents for the evaluation of 960 assays in ten 96-well plates or 192 assays in eight 24-well plates.
Description: Cell Biolabs? CytoSelect WST-1 Cell Proliferation Assay Reagent provides a colorimetric format for measuring and monitoring cell proliferation. The 10 mL volume is sufficient for the evaluation of 960 assays in ten 96-well plates or 192 assays in eight 24-well plates. Cells can be plated and then treated with compounds or agents that affect proliferation. Cells are then detected with the proliferation reagent, which is converted in live cells from WST-1 to the formazan form in the presence of cellular NADH and an electron mediator. An increase in cell proliferation is accompanied by increased signal, while a decrease in cell proliferation (and signal) can indicate the toxic effects of compounds or suboptimal culture conditions. The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues. This cell proliferation reagent can be used to detect proliferation in bacteria, yeast, fungi, protozoa as well as cultured mammalian and piscine cells.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-E cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-GP cells contain the gag and pol genes required for retroviral packaging; an expression vector is co-transfected with a VSVG envelope vector.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Laminin.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-A cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: Our CytoSelect 384-Well Cell Transformation Assay uses a modified soft agar 3D matrix to support the formation of colonies by neoplastic cells. Quantitation of cell transformation is performed on a fluorescence plate reader.
Description: Our CytoSelect 384-Well Cell Transformation Assay uses a modified soft agar 3D matrix to support the formation of colonies by neoplastic cells. Quantitation of cell transformation is performed on a fluorescence plate reader.
Description: Phagocytosis can be assayed by measuring the engulfment of a cell "substrate". However, traditional assays require tedious cell counting under a microscope. Our CytoSelect 96-Well Phagocytosis Assay, Red Blood Cell Substrate provides a more accurate, user-friendly, high-throughput alternative to the standard phagocytosis assay. The assay may be adapted for use with 24-well or 48-well plates.
Description: Many solid tumors contain heterogeneous populations of normal and cancerous cells. Separation of these cell populations is key to an accurate assessment of the true genotypic and phenotypic differences between normal and tumor cells. Our CytoSelect Clonogenic Tumor Cell Isolation Kit uses a proprietary semisolid agar medium to facilitate formation of colonies by cells from solid tumors. Colonies are grown in either a 6-well plate or a 35mm culture dish. These colonies are isolated away from single (i.e. normal) cells by size filtration. The viable cells from these colonies can be easily recovered for further analysis.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: Cell Biolabs? CytoSelect Proliferating Cell Nuclear Antigen (PCNA) ELISA Kit is an enzyme immunoassay developed for the detection and quantitation of PCNA from nuclear and whole cell extracts. The kit detects PCNA from mouse, rat and human, and has a detection sensitivity limit of 12.5 ng/mLPCNA. Each kit provides sufficient reagents to perform up to 96 assays including standard curve and unknown samples.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Laminin.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Laminin.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Laminin.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect 96-Well Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 96-well plates on a fluorescence plate reader. Inserts are precoated on the top of the membrane with Laminin.
Radius 24-Well Cell Migration Assay, (Collagen I Coated)
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect 96-Well Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 96-well plates on a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibrinogen.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibrinogen.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibronectin.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibronectin.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their enviroment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 12 µm pore size is suitable for astrocytes and other large or slow-moving cells.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their enviroment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 12 µm pore size is suitable for astrocytes and other large or slow-moving cells.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with your choice of single ECM protein in each of the first 5 rows, with the last row provided as a negative control.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with your choice of single ECM protein in each of the first 5 rows, with the last row provided as a negative control.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with your choice of single ECM protein in each of the first 5 rows, with the last row provided as a negative control.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with your choice of single ECM protein in each of the first 5 rows, with the last row provided as a negative control.
CytoSelect 48-well Cell Adhesion Assay (Collagen I, Colorimetric)
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Collagen I.
CytoSelect 48-well Cell Adhesion Assay (Collagen I, Fluorometric)
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Collagen I.
CytoSelect 48-well Cell Adhesion Assay (Collagen IV, Colorimetric)
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Collagen IV.
CytoSelect 48-well Cell Adhesion Assay (Collagen IV, Fluorometric)
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Collagen IV.
CytoSelect Clonogenic Tumor Cell Isolation Kit (5 x 5 preps)
Description: Many solid tumors contain heterogeneous populations of normal and cancerous cells. Separation of these cell populations is key to an accurate assessment of the true genotypic and phenotypic differences between normal and tumor cells. Our CytoSelect Clonogenic Tumor Cell Isolation Kit uses a proprietary semisolid agar medium to facilitate formation of colonies by cells from solid tumors. Colonies are grown in either a 6-well plate or a 35mm culture dish. These colonies are isolated away from single (i.e. normal) cells by size filtration. The viable cells from these colonies can be easily recovered for further analysis.
Description: Hematopoietic stem cells (HSCs) are well-characterized, tissue-specific stem cells that are responsible for the lifelong maintenance of the hematopoietic system. HSCs or hematopoietic progenitors known as colony-forming cells (CFCs) proliferate to form discrete colonies when cultured in a suitable 3D environment, such as methylcellulose supplemented with nutrients and cytokines. Our CytoSelect 96-Well Hematopoietic Colony Forming Cell Assay promotes the formation of HSC colonies in just 7-10 days. Cells can then be either quantified in a fluorescence plate reader or recovered from the semisolid medium for further downstream analysis.
Description: Cell Biolabs? Cell Contraction Assays (Floating Matrix Model) provide a simple, in vitro system to assess cell contractivity and screen cell contraction mediators. The proprietary Cell Contraction Plate eliminates the matrix releasing step of the conventional contraction assay, providing a faster, higher-throughput method to assess cell contraction.
Description: Cell haptotaxis describes cell migration toward or along a gradient of chemoattractants or adhesion sites in the extracellular matrix. The CytoSelect Cell Haptotaxis Assays are ideal for determining the migratory properties of cells. The 8 µm membrane pore size is ideal for epithelial cells and fibroblasts. The membrane serves as a barrier to distinguish between migratory and non-migratory cells.
Description: Cell haptotaxis describes cell migration toward or along a gradient of chemoattractants or adhesion sites in the extracellular matrix. The CytoSelect Cell Haptotaxis Assays are ideal for determining the migratory properties of cells. The 8 µm membrane pore size is ideal for epithelial cells and fibroblasts. The membrane serves as a barrier to distinguish between migratory and non-migratory cells.
Description: Cell haptotaxis describes cell migration toward or along a gradient of chemoattractants or adhesion sites in the extracellular matrix. The CytoSelect Cell Haptotaxis Assays are ideal for determining the migratory properties of cells. The 8 µm membrane pore size is ideal for epithelial cells and fibroblasts. The membrane serves as a barrier to distinguish between migratory and non-migratory cells.
Description: Cell haptotaxis describes cell migration toward or along a gradient of chemoattractants or adhesion sites in the extracellular matrix. The CytoSelect Cell Haptotaxis Assays are ideal for determining the migratory properties of cells. The 8 µm membrane pore size is ideal for epithelial cells and fibroblasts. The membrane serves as a barrier to distinguish between migratory and non-migratory cells.
Description: Hematopoietic stem cells (HSCs) are well-characterized, tissue-specific stem cells that are responsible for the lifelong maintenance of the hematopoietic system. HSCs or hematopoietic progenitors known as colony-forming cells (CFCs) proliferate to form discrete colonies when cultured in a suitable 3D environment, such as methylcellulose supplemented with nutrients and cytokines. Our CytoSelect 96-Well Hematopoietic Colony Forming Cell Assay promotes the formation of HSC colonies in just 7-10 days. Cells can then be either quantified in a fluorescence plate reader or recovered from the semisolid medium for further downstream analysis.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Our CytoSelect 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.
Description: If you are assaying both invasive and migratory properties of your cells, order one of our economic CytoSelect Cell Migration / Invasion Assay Combo kits. These kits save you money compared to buying separate chemotaxis and cell invasion kits. Each 24-well combo kit provides sufficient reagents to perform 12 cell migration plus 12 cell invasion assays.
Description: If you are assaying both invasive and migratory properties of your cells, order one of our economic CytoSelect Cell Migration / Invasion Assay Combo kits. These kits save you money compared to buying separate chemotaxis and cell invasion kits. Each 24-well combo kit provides sufficient reagents to perform 12 cell migration plus 12 cell invasion assays.
Description: If you are assaying both invasive and migratory properties of your cells, order one of our economic CytoSelect Cell Migration / Invasion Assay Combo kits. These kits save you money compared to buying separate chemotaxis and cell invasion kits. Each 24-well combo kit provides sufficient reagents to perform 12 cell migration plus 12 cell invasion assays.
Description: If you are assaying both invasive and migratory properties of your cells, order one of our economic CytoSelect Cell Migration / Invasion Assay Combo kits. These kits save you money compared to buying separate chemotaxis and cell invasion kits. Each 96-well combo kit provides sufficient reagents to perform 96 cell migration plus 96 cell invasion assays.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.
Description: MEF Feeder Cells are mouse embryonic fibroblasts that allow stem cell culture without LIF. Cells must be mitotically inactivated prior to addition of stem cells.
Description: JK1 Feeder Cells are used for the maintenance of numerous types of stem cells in their undifferentiated state. The cells must be mitotically inactivated prior to the addition of ES cells, such as treatment with mitomycin C (2-4 hr, 10 µg/mL).
Description: The SNL 76/7 cell line, established by Dr. Allan Bradley, is clonally derived from a mouse fibroblast STO cell line transformed with neomycin resistance and murine LIF genes. SNL can be used as a feeder cell for ES cell growth, and it also has been recently used in mouse or human iPS culture.
Description: OxiSelect Comet Assay Control Cells are a set of two cell lines that serve as a positive control (Etoposide-treated) and a negative control (untreated) respectively.
Description: MEF Feeder Cells are mouse embryonic fibroblasts that allow stem cell culture without LIF. Cells must be mitotically inactivated prior to addition of stem cells. Neomycin resistant.
Description: MEF Feeder Cells are mouse embryonic fibroblasts that allow stem cell culture without LIF. Cells must be mitotically inactivated prior to addition of stem cells. Puromycin resistant.
Description: MEF Feeder Cells are mouse embryonic fibroblasts that allow stem cell culture without LIF. Cells must be mitotically inactivated prior to addition of stem cells. Hygromycin resistant.
Description: Our Cellular Senescence Flow Cytometry Assay provides an efficient method to measure Senescence Associated (SA) ß-galactosidase activity. A fluorogenic substrate is added directly to senescent ells in a 35 mm dish. Results can be measured by either flow cytometry or epifluorescence microscope.
Description: Our Cellular Senescence Flow Cytometry Assay provides an efficient method to measure Senescence Associated (SA) ß-galactosidase activity. A fluorogenic substrate is added directly to senescent ells in a 35 mm dish. Results can be measured by either flow cytometry or epifluorescence microscope.
Description: Our Cellular Senescence Activity Assay provides an efficient method to measure Senescence Associated (SA) ß-galactosidase activity. SA-ß-Gal catalyzes the hydrolysis of X-gal, which produces a blue color in senescent cells. Quantify senescence using a fluorescence plate reader.
Description: Our Cellular Senescence Activity Assay provides an efficient method to measure Senescence Associated (SA) ß-galactosidase activity. SA-ß-Gal catalyzes the hydrolysis of X-gal, which produces a blue color in senescent cells. Quantify senescence using a fluorescence plate reader.
Description: Our Cellular Senescence Staining Kit provides an efficient method to visualize Senescence Associated (SA) ß-galactosidase. SA-ß-Gal catalyzes the hydrolysis of X-gal, which produces a blue color in senescent cells. Visualize results with a standard light microscope.
Description: Our Cellular Senescence Staining Kit provides an efficient method to visualize Senescence Associated (SA) ß-galactosidase. SA-ß-Gal catalyzes the hydrolysis of X-gal, which produces a blue color in senescent cells. Visualize results with a standard light microscope.
OxiSelect Cellular UV-Induced DNA Damage ELISA Kit (CPD)
Description: Our OxiSelect Cellular UV-Induced DNA Damage ELISA Kit mesaures the formation of cyclobutane pyrimidine dimers (CPD) in intact cells. Cells are first seeded in a 96-well tissue culture plate. Wells are then UV irradiated to induce DNA damage. After fixation and denaturation, cells containing the DNA lesions are probed with an anti-CPD antibody, followed by an HRP conjugated secondary antibody.
OxiSelect Cellular UV-Induced DNA Damage ELISA Kit (CPD)
Description: Our OxiSelect Cellular UV-Induced DNA Damage ELISA Kit mesaures the formation of cyclobutane pyrimidine dimers (CPD) in intact cells. Cells are first seeded in a 96-well tissue culture plate. Wells are then UV irradiated to induce DNA damage. After fixation and denaturation, cells containing the DNA lesions are probed with an anti-CPD antibody, followed by an HRP conjugated secondary antibody.
OxiSelect Cellular UV-Induced DNA Damage ELISA Kit (6-4PP)
Description: Our OxiSelect Cellular UV-Induced DNA Damage ELISA Kit measures the formation of 6-4PP in intact cells in a 96-well ELISA plate-based format. Cells are first seeded in a 96-well tissue culture plate. Wells are then UV irradiated to induce DNA damage. After fixation and denaturation, cells containing the DNA lesions are probed with an anti-6-4PP antibody, followed by an HRP conjugated secondary antibody.
OxiSelect Cellular UV-Induced DNA Damage Staining Kit (CPD)
Description: Our OxiSelect Cellular UV-Induced DNA Damage Staining Kit measures the formation of cyclobutane pyrimidine dimers (CPD) by immunofluorescence. Cells are first seeded in a 96-well tissue culture plate. Wells are then UV irradiated to induce DNA damage. After fixation and denaturation, cells containing the DNA lesions are probed with an anti-CPD antibody, followed by a FITC conjugated secondary antibody. The unbound secondary antibody is removed during a wash step, and stained cells can then be visualized with a fluorescence microscope.
OxiSelect Cellular UV-Induced DNA Damage Staining Kit (6-4PP)
Description: Our OxiSelect Cellular UV-Induced DNA Damage Staining Kit measures the formation of 6-4PP structures in DNA by immunofluorescence. Cells are first seeded in a 96-well tissue culture plate. Wells are then UV irradiated to induce DNA damage. After fixation and denaturation, cells containing the DNA lesions are probed with an anti-6-4PP antibody, followed by a FITC conjugated secondary antibody. The unbound secondary antibody is removed during a wash step, and stained cells can then be visualized with a fluorescence microscope.
OxiSelect Cellular UV-Induced DNA Damage ELISA Kit (CPD), Trial Size
Description: Our OxiSelect Cellular UV-Induced DNA Damage ELISA Kit mesaures the formation of cyclobutane pyrimidine dimers (CPD) in intact cells. Cells are first seeded in a 96-well tissue culture plate. Wells are then UV irradiated to induce DNA damage. After fixation and denaturation, cells containing the DNA lesions are probed with an anti-CPD antibody, followed by an HRP conjugated secondary antibody.
OxiSelect Cellular UV-Induced DNA Damage ELISA Kit (6-4PP), Trial Size
Description: Our OxiSelect Cellular UV-Induced DNA Damage ELISA Kit measures the formation of 6-4PP in intact cells in a 96-well ELISA plate-based format. Cells are first seeded in a 96-well tissue culture plate. Wells are then UV irradiated to induce DNA damage. After fixation and denaturation, cells containing the DNA lesions are probed with an anti-6-4PP antibody, followed by an HRP conjugated secondary antibody.
OxiSelect Cellular UV-Induced DNA Damage Staining Kit (CPD), Trial Size
Description: Our OxiSelect Cellular UV-Induced DNA Damage Staining Kit measures the formation of cyclobutane pyrimidine dimers (CPD) by immunofluorescence. Cells are first seeded in a 96-well tissue culture plate. Wells are then UV irradiated to induce DNA damage. After fixation and denaturation, cells containing the DNA lesions are probed with an anti-CPD antibody, followed by a FITC conjugated secondary antibody. The unbound secondary antibody is removed during a wash step, and stained cells can then be visualized with a fluorescence microscope.
Description: Alkaline Phosphatase (AP) is a widely used marker for both mouse and human embryonic stem cells (ES) and embryonic germ cells (EG). Our StemTAG Alkaline Phosphatase kits provide an efficient system for monitoring cell differentiation or undifferentiation using the AP marker. The StemTAG Alkaline Phosphatase Staining Kits provide reagents for monitoring alkaline phosphatase activity via immunocytochemistry staining.
OxiSelect Cellular UV-Induced DNA Damage Staining Kit (6-4PP), Trial Size
Description: Our OxiSelect Cellular UV-Induced DNA Damage Staining Kit measures the formation of 6-4PP structures in DNA by immunofluorescence. Cells are first seeded in a 96-well tissue culture plate. Wells are then UV irradiated to induce DNA damage. After fixation and denaturation, cells containing the DNA lesions are probed with an anti-6-4PP antibody, followed by a FITC conjugated secondary antibody. The unbound secondary antibody is removed during a wash step, and stained cells can then be visualized with a fluorescence microscope.
Description: The OxiSelect Cellular Antioxidant Assay Kit is a cell-based assay for measuring the activity of an exogenous antioxidant compound within adherent cells. Cells are first cultured in a 96-well black fluorescence cell culture plate until confluent. Then the cells are pre-incubated with a cell-permeable DCFH-DA fluorescence probe dye and the bioflavonoid Quercetin, or the antioxidant sample being tested. After a brief incubation, the cells are washed, and the reaction started by adding the Free Radical Initiator. The Free Radical Initiator creates free radicals that convert the probe to highly fluorescent DCF. The Quercetin inhibits the formation of free radicals, and thus DCF formation, in a concentration dependent manner.
×
Mesenchymal stem cells (MSCs) are multipotent, genomics stable, self-renewable, and adult stem cells are expandable culture. MSC network facilitates the development, maintenance and repair, and generate secretory factor that engraftment and function of trophic support, mark them an attractive choice in cell therapy, regenerative medicine and tissue engineering.